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Abstract — Cfosed-forrn solutions are presented for the frequency-depen-

dent characteristic impedance of microstrip as defined hy the ratio of the

electromagnetic power to the square of the electric current. Tbe aualysis

uses the rigorous spectral-domain approach based on the charge-current

formulation. Anafyticaf expressions for the ‘impedance solutions show that

the frequeney dispersion occurring iu microstrip is characterized in terms

of three different impedances. The characteristic impedance of a TEM line

given in the limit as the frequency decreases is derived from oue of these

impedances, and the other two are iuvolved in expressing the nature of

dispersion to vanish in the limit. Conversely, as the frequency increases,

these dispersive parts grow rapidly. Some comments are giveu in conjunc-

tion with previous works.

I. INTRODUCTION

sINCE A REAL microstrip line is not a TEM line, the

problem of microstrip is treated as the problem of

full-wave analysis. In the early stages, therefore, a large

amount of attention was paid to evaluating, from Maxwell’s

equations, the frequency dispersion in microstrip. Recent

concern of some people in the microwave community

seems to have shifted to the subject of how the frequency

dispersion can be characterized by a circuit-theory-based

model. (The reader can find good introductions to current

trends of microstrip in recent papers published in this

TRANSACTIONS [1] or other related journals [2].)

The first important feature of the modeling mentioned

above is that it will help us to explain the mechanism of

dispersion by means of circuit description, just as a true

TEM line is described in terms of circuit elements such as

distributed line-capacitance, distributed line-inductance,

and characteristic impedance. The second feature is that a

certain extension of the fundamental concept of a TEM

line may be possible. For the latter, however, we need to

establish some other modeling that contains the influence

of field excitation at terminals of microstrip. To do this,

Getsinger [3] defines the “apparent characteristic imped-

ance” on the basis of accurate measurements of the reflec-

tion loss in the transfer of power between the source and

the stripline. Kuester, Chang, and Lewin [4] discuss the

same problem from theoretical viewpoints, and conclucle.

that if no definition can be found which has a sufficiently

broad usefulness, one may have to bear certaiti possible
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definitions in mind. We must await further experimental

evidence.

Nevertheless? whatever the results of measurements to

follow, the significance for evaluating the characteristic

impedance of dispersive rnicrostrip remains unchanged.

The main objective of this paper is to present analytical

expressions for the characteristic impedance given by the

ratio of the electromagnetic power flowing along the strip-

line to the square of the total longitudinal electric current.

Unlike numerical procedures, lengthy calculations to ob-

tain solutions are necessary, but the resulting expressions

are simple. Although the paper does not claim to have
given a new formulation, the closed-form expressions ob-

tained for the characteristic impedance are new and rigor-

ous. We shall begin with the known formulation for electric

charge and electric currents on the strip.

II. BASIC EQUATIONS

Fig. 1 shows a geometry of the open microstrip we wish

to consider. The substrate material between a strip of zero

thickness with width w and a ground plane is assumed to

have magneto-dielectric properties. For the special case

when the substrate is a dielectric as usual, we put p,= 1

and c, >1. The electric charge sources and the electric

current sources are induced over the upper and lower

surfaces of the conducting strip. The surface charge den-

sity, given at a point x (Y = O) as the sum of the upper and

lower charges, is denoted by p,, and the surface current

densities flowing at a point x toward the longitudinal

direction (z-direction) of the stripline axis and the trans-

verse direction (x-direction) are denoted by .1, and J~f,

respectively. These are related by the continuity equation

13J,,
—= j(j?J, -up~)
8X

(1)

where ~ is the propagation constant and Q is the angular ,

frequency. We note that the phase factor e~tti~-~z) is

suppressed through the paper.

Since J., stands for the sum of the upper and lower

current densities on the strip, the edge condition for J.t is

J.,(+ w/2) =0. (2)

The value of J.* maybe considered to be rather small when

narrow strip approximations are adopted, but neglecting

this current results in the inaccurate solution which is

unable to describe the whole nature of dispersive charac-
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Fig. 1. Microstnp.

teristics. In particular, J,, plays an important role in

expressing the characteristic impedance. To see this, we

develop a rigorous theory based on the charge-current

formulation.

Although a variety of approaches to obtain rigorous

solutions are examined [5], the charge-current model ap-

pears to have a certain possibility of extending quasi-static

approximations familiar to a quasi-TEM line. The

mathematical formulation presented here was originated in

1971 by Fujiki, Hayashi, and Suzuki [6], and in 1972

independently by Itoh and Mittra [5], and refined later by

Chang and Kuester [7]. Basic equations to be derived from

the theory will be summarized as follows.

Integrating (1) over the strip and taking account of (2),

we obtain

where 1 and Q are, respectively, the total current and the

total charge per unit length such that

I= j::2~ dx Q = jw12 p. dx. (4)
– w/2

Electromagnetic fields in air (y> O) can be represented in

terms of vector potential A and scalar potential @by

where A and ~ obey

a2~ az+
—+(k2–/32)@=o

dx2 + dyz
(6a)

a2A a2A
—+(kz–pz)xl=o

ax2 + ay2
(6b)

thus, satisfying the Lorentz gauge. Here, k is the wave-

number in air ( = Q=).

Because of the absence of y-directed currents on the

strip, the components of vector A are AX and A= only;

AY = O everywhere. Thus

EY= –%.
ay

(7)

Differentiating (7) with respect to y, we obtain

Finally, using Gauss’ law and equating the term on the

left-hand side to zero over the upper surface of the con-

ducting strip (y= + O) as

aE.. aE..
‘+j~E==O

av’=– ax
(9)

we find that @ satisfies a homogeneous differential equa-

tion of the second order. The symmetric solution which

corresponds to the fundamental stripline mode is

(@= A cosh ~~x )
(10)

where A k an arbitrary constant.

On the other hand, the scalar potential, as well as the

vector potential, may be expressible in terms of p,, .T,, and

J,,. According to the literature [6], [7], these potentials are

given on the strip by

0=& j%(~-~’)p,(x’)dx’ (ha)

AX= :/GA(x –x’)J,, (x’) dx’

+; X & j;~(x-x’)~,(x’) dx’ (llb)

AZ=: jGk(x–x’)J, (x’)dx’

B—
- x ~ jMx-x’)Ps(@x’ (llC)(.lJ o

where

/“dx’+’’:2”dx’
and G,(x), Gfi(x), and M(x) are even functions of x, as

listed in Appendix I. The tangential components of the

electric vector are then

a+
EX=–juAX– Z

—— – juX~jGA(x –x’).l,, (x’)dx’

‘~ j;[G,(X-X)+~(X-Xr)]P,(X) dx

(12a)
E== – juAz + j~+

—— – jti X ~lGfi(x –x’)J,(x’) dx’

+~~X&j[Ge(x-x’) +M(x-x’)],,(x’) dx’.

(12b)

Substituting (10) into the left-hand side of (ha) gives a

Fredholm integral equation of the first kind, from which p,

k solvable. As stated in the theory by Fujiki, Hayashi, and

Suzuki [6], letting EX = O and E== O in (12) also give the

integral equations of the same type. The solutions J,f and

J. are obtained using p, previously obtained. The value of

~ can be determined from the edge condition (2). Such

solutions are found to satisfy (1) or (3) exactly. In other

words, the value of ~ can be calculated in a straightfor-

ward manner by (3), inserting J, and p, into (4). This is

useful because we do not need to calculate J...
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We start with these basic equations, which are rigorous 8 “

to any structure of the open rnicrostrip shown in Fig. 1. wld
refU31

III. CHARACTEJUSTIC IMPEDANCE
. 1

For reasons discussed earlier [1]-[4] as to how we should tti;
define the characteristic impedance 20 for practical use in

design applications, we assumel 6 /

20=; (13) I 1
0 0.05 0.1o 0.15

where P is the total average power in the z-direction dl~
(a)

P=; jEx H*. dS. (14)

Since p., J,, and J,, are assumed to have already been

determined, it is possible to evaluate the electromagnetic

fields in the air and substrate regions. Such fields can be

described in terms of p. and J,. It follows that the power P

can be described by the convolutions J$ x J., p. x P,, and

p. x J,. In fact, we have

P = Pll + P22 + P12 (15)

where

x [J, (X’) J.*(X) +J,, (X{) J,~(X)] dx’dx (16a)

P,,=; jjz,2(x-x’)(;Ps(x’)) (;P;(x)) dxrdx

(16b)

p,, = jjz,2(x-xf)J&f&(@) dx’dx (16C)

and the functions Zll(x – x’), Zzz(x – x’), and Zlz(x – x’)

are the “distributed mutual impedances” between the points

x and x’, as given in Appendix II. Note that the J,z X J~f

term in Pll is derived by combining the three convolutions

so as to use the relation (l).

If the “effective mutual impedances” Z,, are defined as

P,j = : Z,JII* (17)

then

Z.= 212 + 211+ z2j. (18)

This is a rigorous expression for 2.. We do not mention

analytical details of the derivation outlined above so as not

to become involved in mathematical complexities. Instead,

we will show later another way to obtain the solutions,

since the two solutions derived in different ways are in

complete agreement.
In the static limit, Pll and Pz. vanish, and P,, tends to

the power of a TEM line

P,, + ;1+ (M(x) +o). (19)

1This subject is beyond the scope of the paper.

dl~
(b)

Fig. 2. J?xamples of narrow strip approximations in comparison with
numerical solutions by Kowrdski and Pre la [8] (c, = 9.7, y,= 1). (a)

}Effective dielectric constant Ccfs ( = ~2/k ). (b) Characteristic imped-

ance ZO ( = Z12 + Zll + Z22).

This means that Pll and P22 are describing the “dispersive

powers” due to dispersion under consideration.

To obtain an approximate solution valid for narrow

strips, we use the fact that Z12(X ) possesses a logarithmic

singularity at x = O, whereas Zll(x) and Z22(X ) are regular,

and hence, set

211 = Zll(o) 222 = Z22(0). (20)

For Zlz associated with P12, we must perform double

integration over the strip. However, calculations of the

singular part of Zlz(x ) give the static solution, which is

reduced to the well-known formula for the characteristic

impedance of a TEM line. The remaining terms are nonsin-

gular and thus easy to obtain within the range of ap-

proximations (20). This procedure of calculation is pro-

posed in [7]. Numerical examples for t.= 9.7 and p,= 1

are shown in Fig. 2. Curves in the two figures are plotted

versus d/A, where A is the wavelength in air.
Fig. 2(a) is a test of the validity of the theory, because

the result is the same with that in [7]. In Fig. 2(b), we plot

curves of Zll, Z22, and zIZ for w/d = O.1 and 1. It iS

important to note that the value of % decreases with

increasing the frequency and the others increase rapidly if

the strip is narrow. The value of 20 calculated with the

abovementioned approximations decreases a little, but soon
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begins to increase rapidly and reaches the reliable numeri-

cal solution of Kowalski and Pregla [8]. We therefore

conclude that the dispersive nature of the characteristic

impedance is mainly described by Zll and Zzz, as shown

in the figure.

IV. LINE INDUCTANCE AND LINE CAPACITANCE

Recalling that the functions .J,(.x) and p.(x) are even

and real, whereas the function .l.t(x ) is odd and imaginary,

or

J,:(x) =–J,, (x) (21)

we consider a lossy system of microstrip in the following.

The power loss per unit length of the conducting strip can

be calculated by

(22a)

(22b)

1
——

T
J( EZJ, – EXJ,t) dx (22C)

where subscripts 1 and tdenote “longitudinal component”

and “transverse component,” respectively. It should again

be emphasized that the goal of this section is not to

calculate a loss of the transmission system but to derive

analytical expressions for the characteristic impedance. We

will see this immediately.

Integrating by parts in (22c), we obtain

1 p.

( /J
~R12=–ju X– —

2 2?r
Gk(x – X’)

o[J,(x’)J,(x)-J,, (.z’)Y.,(.x)] dx’dx

-& JJIGc(x-x’)+~(x-x’)l

“~s(x’)~s(x)dx’dx
}

For lossy lines with complex ~ ( = & – ja), J,(x), J~,(x),

and p,(x) are slightly deviated from the values in a lossless

system, according to

In addition to these, we must calculate infinitesimal incre-

ments of G~(x), G,(x), and M(x). Total loss R12/2 is

given by the sum of these contributions. If, however, we

undergo the increments of Ji(x ), J,~(x ), and P,(X), and if

we ignore the effects of Gk (x), G,(x), and M(x), then

28P
8~(J,Az – J,fAY – P#) dx = – — X2P12. (25)

a

This is a statement of variational principle for charge and

currents. A proof of the theorem is given in Appendix III.

Hence, the first variation of the integral on the right-hand

side of (23) becomes

( I/
1 p.

~R12=–jm X– —
2 2!r

;Gh(x–x’)

x [Js(x’)Js(x)

— J,, (x’) J,,(x)] dx’dx

-+ JJ;[Ge(x-x’)+M(x-x’)l
o

“Paps dx’d~

2
—

- x +//[ Ge(x-x’)+~(x-x’)l6)

}
.P,(x’)J,(x)dx’dx ~~ (

where the third term in { } corresponds to (25), and

8P= – ja.

Another useful definition for a is

R

a=2zo”

Using this formula, we have

~R12 = Z012 X a

=2( P11+P22+I’l*)x~

= (Z1112 + Z2212 + Z121’)Xa. (29)

Furthermore, comparing (26) with (29), we find

(26)

(27)

(28)

(30a)z,,(x) =-; x;; G,(x)

222(X)=:X 22X 1 a()2U
~m[G,(x)+M(x)]

o

(30b)

z,2(x)= ; x-&[ Ge(x)+ @x)] (30C)
o

which are identical with the previous results obtained in

Appendix II.
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Now, let us define line inductances and line capacitances

as

L(B)=;x:j@(x-x’)

x [J,(x’).l,(x)- .l,t(x’).lst(x) ldx’dx (Sla)

Ll(/3)= :x:~~Gh(x -x’) J,(x’)J. (x)dx’dx (31b)

L,(p)= > x ~~jGk(x–x’)[– ~,,(x’)~,,(x)] dx’dx

(31C)

1 11
—JJ[Ge(x -x’)+~(x -41

~=@3x2%

X ~~(X’)f3,(X) dx’dx (31d)

1 11
_ .— —~~[Ge(x - X’)+M(X - X)]
Cl(/3) Q’ x 27rc0

()XP.(X’) :~,(X) dx’dx

1 2jl
.—

()
Q, ; PI’ (31e)

1 11
_ .— J/;x[(—- G= X ‘X’)+ fkf(X-X’)]
Ct(/3) Q’ x27rco

()J,,(x)
Xp, (x’) ~ dx’dx (31f)

where

L(~) =L/(B)+l’,(B) (32a)

1 1 1

~=m+cz(p)”
(32b)

We must be careful that the parameter ~ included in J,(x),

J,,(x), and p,(x) is not taken as a variable to calculate the

circuit elements of (31). If this were done, the results which

follow would be wrong.2

In terms of these circuit elements, (22) can be written

(
/32

~R,12= – ~ jtiLl(P)+
1

I’ (33b)
JcJC,(B)

{

B’
~RtI’= – ~ @L,(B)+

}
12. (33c)

j~G(B)

Letting R = R,= R,= O in (33) gives a set of dispersion

2Corrections should be made to these results. For extiple, in (37), the

last term should be removed from the right side.

1135

equations for lossless lines

B= @imm (34a)

P=&(P)=”mmm (34b)

If we want to determine the value of ~, we can select one

equation in (34) as a dispersion equation. These three

conditions are incorporated in the theory so that if one of

these is satisfied the others are satisfied too. A convenient

choice may be (34a) or (34b), which is entirely valid even

for pure-TEM and quasi-TEM modes. Note that, in [7], the

value of ~ ii determined from (34b).

The next step is to apply the above circuit description to

the variational expression (26). The result is

-(&&)Q2-(;)z%)” (3,)
or in the equivalent form

Hence, we have

This is another rigorous expression for ZO with arbitrary

parameters.

As the operating frequency decreases or the width of the

conducting strip decreases, the transverse elements L,(P)

and l/Ct ( D ) described above become negligible! and

therefore the theory provides the low-frequency operating

solutions as given by Kuester, Chang, and Lewin [4].

Namely, if we replace L(B) in (37) by L~(F) and C(P) bY

C,(P) and neglect the last term, then we obtain their
(lCCL) solution. The accuracy of this class of approxima-

tion may, however, hold invalid over the entire (complex)

&plane, which will be used to determine the z-dependent

field excited at an input terminal of microstrip by means of

the spectral-domain method. The work presented in this

section suggests further research that includes the investi-

gation of the complex behavior of the transverse elements

on the &plane. The KCL solution for Z. behaves as an
increasing function with increasing the frequency. This will

be proved as follows, rewriting (37) with (34) as:

(38)
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and neglecting the third term in (38J. Note that the second APPENDIX II

term is the leading term which increases as the frequency Mutual impedances between two points on the strip are
increases. Note also that the first term becomes equal tO defined as

Zlz because of

B

r

Ll(fi)
-%2= ~cqp) =

c,(p) -

z,,(x) = z~m511(cx)cos(ax) da (A7a)

(39)
z,,(x) = 2~m52,(~)cos(~x) da (A7b)

We see that the increasing property of ZO can therefore be z12(x) = 2~%(a)cos(ax) da (A7c)
characterized in terms of the negative derivative

w[mw.
In the case of o + O, L(p) and C(P) approach Ll(~)

and C1( ~ ), respectively, and lastly these limiting values are

to coincide with the values of the static elements by

Vaynshteyn and Fialkovskiy [9].

V. CONCLUSION

A theory has been developed to obtain a rigorous solu-

tion for dispersive microstrip. Closed-form expressions for

the characteristic impedance Z. have been derived. It is

pointed out that the frequency dispersion of Z. in the

graph is caused as a result of the negative slope of the

curve L ( /3) X C( ~ ) versus ~. Since, in the previous theory,

the transverse elements are ignored, the theory seems valid

for limited use in the low-frequency range. The present

theory holds valid at all frequencies and thus is applicable

to strips with arbitrary width in the high-frequency operat-

ing regime, which are solved in [10].

APPENDIX I

Functions Gk(x), n(x), and G,(x) are as follows:

where

{[

11
.— — tanh(Kld )

K. Crlcl

d
+

~rcosh2 (Kld) 1
[

11
+ —+— coth(tqd)

K. P,K1

(A8)

G~(x)=2/m~h(a) cos(ax)da (Ala) d
0 — 1Gh(a)v,sinh2(Kid)

kf(X) = 2~%(a)cos(ax) da (Alb)
o

[

11 d
— —+— tanh(~ld)+

K. t,Kl c,cosh2 (Kld) 1
G,(x) = 2~m~, (a)cos(ax) da (Ale)

o

)
.G,(a) M(a)

where

(A2)

p2

.

H

;X—x &;[Ge(a)+i@)] (A9)
O

(~rpr-l)k2
b

z12(a) =:x &[ Ge(a)+fi(a)]. (A1O)

‘(a) = (/JrKo + K1coth(qd))(c/co + K, taIIh(K1d))Ico
o

1

u

APPENDIX III
KI

x— (A3) Calculate the first variation for charge and currents.‘e(a) = Kl+- 6rKocoth(Kld) ‘O

Then

and

Ko=~

(A4)

(A5)

(A6)

J8 (.I$AZ– J,tAx – p,@)dx

=~//G,(x-x’)[Js( x’)2U(X)

–.I,,(x’)28J,,(x)] dx’dx

1
—

2mo—JJ[ (G, X–X’)+kf(X-X’)]

X ~,(x’)28p, (x) dx’dx. (All)
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The 8P, is given by

.Substituting this into (All) and integrating by parts, the

right-hand side becomes

Xp. (x’).l, (x)dx’dx

The first double integral is found to be equal to 2PIZ, and

the second and third integrals vanish because E= = O and

EX = O on the strip.
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