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A Rigorous Solution for
Dispersive Microstrip

MASAHIRO HASHIMOTO, SENIOR MEMBER, IEEE

Abstract — Closed-form solutions are presented for the frequency-depen-
dent characteristic impedance of microstrip as defined by the ratio of the
electromagnetic power to the square of the electric current. The analysis
uses the rigorous spectral-domain approach based on the charge-current
formulation. Analytical expressions for the impedance solutions show that
the frequency dispersion occurring in microstrip is characterized in terms
of three different impedances. The characteristic impedance of a TEM line
given in the limit as the frequency decreases is derived from one of these
impedances, and the other two are involved in expressing the nature of
dispersion to vanish in the limit. Conversely, as the frequency increases,
these dispersive parts grow rapidly. Some comments are given in conjunc-
tion with previous works.

I. INTRODUCTION

INCE A REAL microstrip line is not a TEM line, the

problem of microstrip is treated as the problem of
full-wave analysis. In the early stages, therefore, a large
amount of attention was paid to evaluating, from Maxwell’s
equations, the frequency dispersion in microstrip. Recent
concern of some people in the microwave community
seems to have shifted to the subject of how the frequency
dispersion can be characterized by a circuit-theory-based
model. (The reader can find good introductions to current
trends of microstrip in recent papers published in this
TRANSACTIONS [1] or other related journals [2].)

The first important feature of the modeling mentioned
above is that it will help us to explain the mechanism of
dispersion by means of circuit description, just as a true
TEM line is described in terms of circuit elements such as
distributed line-capacitance, distributed line-inductance,
and characteristic impedance. The second feature is that a
certain extension of the fundamental concept of a TEM
line may be possible. For the latter, however, we need to
establish some other modeling that contains the influence
of field excitation at terminals of microstrip. To do this,
Getsinger [3] defines the “apparent characteristic imped-
ance” on the basis of accurate measurements of the reflec-
tion loss in the transfer of power between the source and
the stripline. Kuester, Chang, and Lewin [4] discuss the
same problem from theoretical viewpoints, and conclude
that if no definition can be found which has a sufficiently
broad usefulness, one may have to bear certain possible
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definitions in mind. We must await further experimental
evidence.

Nevertheless, whatever the results of measurements to
follow, the significance for evaluating the characteristic
impedance of dispersive microstrip remains unchanged.
The main objective of this paper is to present analytical
expressions for the characteristic impedance given by the
ratio of the electromagnetic power flowing along the strip-
line to the square of the total longitudinal electric current.
Unlike numerical procedures, lengthy calculations to ob-
tain solutions are necessary, but the resulting expressions
are simple. Although the paper does not claim to have
given a new formulation, the closed-form expressions ob-
tained for the characteristic impedance are new and rigor-
ous. We shall begin with the known formulation for electric
charge and electric currents on the strip.

II.

Fig. 1 shows a geometry of the open microstrip we wish
to consider. The substrate material between a strip of zero
thickness with width w and a ground plane is assumed to
have magneto-dielectric properties. For the special case
when the substrate is a dielectric as usual, we put p =1
and ¢,>1. The electric charge sources and the electric
current sources are induced over the upper and lower
surfaces of the conducting strip. The surface charge den-
sity, given at a point x (y = 0) as the sum of the upper and
lower charges, is denoted by p,, and the surface current
densities flowing at a point x toward the longitudinal
direction (z-direction) of the stripline axis and the trans-
verse direction (x-direction) are denoted by J; and J,
respectively. These are related by the continuity equation

aJ. (1)

st
ax
where 8 is the propagation constant and w is the angular
frequency. We note that the phase factor e/ is
suppressed through the paper.
Since J,, stands for the sum of the upper and lower
current densities on the strip, the edge condition for J, is

J (£ w/2)=0. )

The value of J,, may be considered to be rather small when
narrow strip approximations are adopted, but neglecting
this current results in the inaccurate solution which is
unable to describe the whole nature of dispersive charac-

Basic EQUATIONS

= j(BJ, — wp,)
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Fig. 1.

Microstrip.

teristics. In particular, J,, plays an important role in
expressing the characteristic impedance. To see this, we
develop a rigorous theory based on the charge-current
formulation.

Although a variety of approaches to obtain rigorous
solutions are examined [5], the charge-current model ap-
pears to have a certain possibility of extending quasi-static
approximations familiar to a quasi-TEM - line. The
mathematical formulation presented here was originated in
1971 by Fujiki, Hayashi, and Suzuki [6], and in 1972
independently by Itoh and Mittra [5], and refined later by
Chang and Kuester [7]. Basic equations to be derived from
the theory will be summarized as follows.

Integrating (1) over the strip and taking account of (2),

we obtain
BI=wQ 3)

where I and Q are, respectively, the total current and the
total charge per unit length such that

2 2
1= " rax o=[""p ax.
—-w/2 ~w/2

(4)

Electromagnetic fields in air (y > 0) can be represented in

terms of vector potential 4 and scalar potential ¢ by
E=-jod-v¢ H=puz'v x4

where 4 and ¢ obey

)

o %
bx—z-i"ay—Z-f-(kz—Bz)qb_O (6a)
9’4 94 s s

w"ﬁ-—a—ﬁ-‘i-(k —,3 )A=0 (6b)

thus, satisfying the Lorentz gauge. Here, k£ is the wave-
number in air (= w/eypg).

Because of the absence of - y-directed currents on the
strip, the components of vector 4 are 4, and 4, only;
A, =0 everywhere. Thus

do
- 7
=% (7
Differentiating (7) with respect to y, we obtain
JE 3% 9%
L= e — = | — 4 k2= % |o. 8
Pl ( PG B* o (8)

Finally, using Gauss’ law and equating the term on the
left-hand side to zero over the upper surface of the con-
ducting strip (y = +0) as

JE,

dy

oFE

=——=+ jBE,=0
7 JBE,

(9)
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we find that ¢ satisfies a homogeneous differential equa-
tion of the second order. The symmetric solution which
corresponds to the fundamental stripline mode is

¢ =Acosh(\/,/32 - kzx)

where A is an arbitrary constant.

On the other hand, the scalar potential, as well as the
vector potential, may be expressible in terms of p,, J,, and
J,,- According to the literature [6],[7], these potentials are
given on the strip by

(10)

1
¢=R/Ge(x—x)ps(x)dx (11a)

‘UlO ’ 4 ’
A= o2 [Gu(x =2, (x) dx

1 1
+ — X
Jw

3
fb}M(x —x)p,(x") dx" (11b)

2me,

A _ ﬂ'/‘Gh(x —x)J (x") dx’
z 2'” 5

B 1

- —X
w  2me,

f- dx’'= f_w:jz- dx’

and G,(x), G,(x), and M(x) are even functions of x, as
listed in Appendix 1. The tangential components of the
electric vector are then

fM(x —x)p,(xydx (1lc)

where

E,=— jod, ——
x= T Jed, = o

©
=— jwX ——O-th(x —x)J,(x") dx’
27

1

2m7e

d
fa [G.(x = x)+ M(x — x")] p,(x") dx’

(12a)
E, =~ jod,+ jB¢

o Po / " dy’
f—]wXEth(x—x)Js(x)dx

1
FIBX - [1G.(x = x)+ M(x = x)] p,(x') dx’.
(12b)

Substituting (10) into the left-hand side of (11a) gives a
Fredholm integral equation of the first kind, from which p,
is solvable. As stated in the theory by Fujiki, Hayashi, and
Suzuki [6], letting E, =0 and E, =0 in (12) also give the
integral equations of the same type. The solutions J,, and
J, are obtained using p, previously obtained. The value of
B can be determined from the edge condition (2). Such
solutions are found to satisfy (1) or (3) exactly. In other
words, the value of 8 can be calculated in a straightfor-
ward manner by (3), inserting J, and p, into (4). This is
useful because we do not need to calculate J,,.
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We start with these basic equations, which are rigorous
to any structure of the open microstrip shown in Fig. 1.
I11.

For reasons discussed earlier [1]-[4] as to how we should
define the characteristic impedance Z,, for practical use in
design applications, we assume’

Z 2P
oI+
where P is the total average power in the z-direction

CHARACTERISTIC IMPEDANCE

(13)

P ! *

—EfEXH .dS. (14)
Since p,, J,, and J,, are assumed to have already been
determined, it is possible to evaluate the electromagnetic
fields in the air and substrate regions. Such fields can be
described in terms of p, and J,. It follows that the power P
can be described by the convolutions J, X J;, p, X p,, and
p, X J,. In fact, we have

P=P,+Py+ P, (15)
where
Py, = %/fzn(x—x’)
X[ (x) (%) + T, (x) I (x)] dx'dx (16a)
1 w @
P [femta=x){ G000 o) avax
(16b)
Pra= [ [l = X000 For(0)|avas (160

and the functions z;;(x — x’), z5,(x — x"), and z,(x — x”)
are the “distributed mutual impedances” between the points
x and x’, as given in Appendix II. Note that the J,, X J,
term in P,; is derived by combining the three convolutions
s0 as to use the relation (1).

If the “effective mutual impedances” Z,, are defined as

17)

1
P, =5 Z,II*

then
Zy=2Z,+Z 1+ Zy,.

(18)

This is a rigorous expression for Z,. We do not mention

analytical details of the derivation outlined above so as not

to become involved in mathematical complexities. Instead,

we will show later another way to obtain the solutions,

since the two solutions derived in different ways are in
complete agreement.

In the static limit, P;; and P,, vanish, and P,, tends to

the power of a TEM line

1 I

P,—- -
275 ¢

(M(x) = 0). (19)

 This subject is beyond the scope of the paper.
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Fig. 2. Examples of narrow strip approximations in comparison with
numerical solutions by Kowalski and Pre§1a [8] (¢, =9.7, u,=1). (a)
Effective diclectric constant €. (= B82/k?). (b) Characteristic imped-
ance Zy (= Zy, + Zy + Zy).

This means that P;; and P,, are describing the “dispersive
powers” due to dispersion under consideration.

To obtain an approximate solution valid for narrow
strips, we use the fact that z,,(x) possesses a logarithmic
singularity at x = 0, whereas z,,(x) and z,,(x) are regular,
and hence, set

Zy= 211(0) Zy= 222(0)' (20)

For Z,, associated with P;,, we must perform double
integration over the strip. However, calculations of the
singular part of z,,(x) give the static solution, which is
reduced to the well-known formula for the characteristic
impedance of a TEM line. The remaining terms are nonsin-
gular and thus easy to obtain within the range of ap-
proximations (20). This procedure of calculation is pro-
posed in [7]. Numerical examples for €,=9.7 and p,=1
are shown in Fig. 2. Curves in the two figures are plotted
versus d /A, where A is the wavelength in air.

Fig. 2(a) is a test of the validity of the theory, because
the result is the same with that in [7]. In Fig. 2(b), we plot
curves of Z,,, Z,,, and Z;, for w/d=0.1 and 1. It is
important to note that the value of Z;, decreases with
increasing the frequency and the others increase rapidly if
the strip is narrow. The value of Z; calculated with the
abovementioned approximations decreases a little, but soon
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begins to increase rapidly and reaches the reliable numeri-
cal solution of Kowalski and Pregla [8]. We therefore
conclude that the dispersive nature of the characteristic
impedance is mainly described by Z;; and Z,,, as shown
in the figure.

IV. LINE INDUCTANCE AND LINE CAPACITANCE

Recalling that the functions J,(x) and p.(x) are even
and real, whereas the function J,(x) is odd and imaginary,
or

J(x) == 4, (x) (21)

we consider a lossy system of microstrip in the following.
The power loss per unit length of the conducting strip can
be calculated by

1 1
— 2 .
SR A= JE.J dx (22a)
——R g2 = f E_J, dx (22b)
1 2 1 2
ERI =5(R[+Rt)1
1
= J(EJ,~E.J,) dx (220)

where subscripts / and ¢ denote “longitudinal component”
and “transverse component,” respectively. It should again
be emphasized that the goal of this section is not to
calculate a loss of the transmission system but to derive
analytical expressions for the characteristic impedance. We
will see this immediately.

Integrating by parts in (22¢), we obtain

1( g ,
5t ff6u=)

[T T (%)= T (x7) T (x)] dx” dx

f/[Ge(x —x)+M(x- x’)]

2meq
-ps(x'm(x)dx'dx}

1
=_ij.£f(JsAz_thAx_ (23)
For lossy lines with complex 8 (= B, — ja), J.(x), J,,(x).
and p,(x) are slightly deviated from the values in a lossless
system, according to

pp) dx.

d
5(3Js,)=j(SBJS+B3L—wSPS)- (24)

In addition to these, we must calculate infinitesimal incre-
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ments of G,(x), G,(x), and M(x). Total loss RI*/2 is
given by the sum of these contributions. If, however, we
undergo the increments of J(x), J,(x), and p,(x), and if
we ignore the effects of G,(x), G.(x), and M(x), then

8[(J.4,~J,A

This is a statement of variational principle for charge and
currents. A proof of the theorem is given in Appendix IIL
Hence, the first variation of the integral on the right-hand
side of (23) becomes

1 1( po d
. 2. _ _ ] Y — !
2RI wa2{2wf/3,8Gh(x x')

X [J,(x")J,(x)

288
—p$)dx=———X2P,. (25)
w

T (%) o (x)] dx’ dx

f/%[Ge(x —x")+ M(x - x")]

2me,

p,(x")p,(x) dx’dx

2
-—X
w 2w,

/f[G (x=x)+M(x-x")]
.ps(x'm(x)dx'dx} % (26)

where the third term in { } corresponds to (25), and

o8 =~ ja. (27)
Another useful definition for « is
R
a= Z—ZO . (28)
Using this formula, we have
1
ERIZ =Z,/*Xa
=2(P+ Py + P,)Xa
=(ZyI*+ ZpI? + Z 1) X @ (29)
Furthermore, comparing (26) with (29), we find
w gy 0
le(x)=_§>< By B,BGh(x) (30a)
12 B2
() =5 %[ 2] X o o600+ M)
(30b)
B 1
1a(x) = 5 X G [6.()+ M(0) (300)

which are identical with the previous results obtained in
Appendix II.
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Now, let us define line inductances and line capaéitances
as
1 Ko
L(B) =gz %5, [[Gulx—x)
X [ ()T (x) = T (x) Ty (x)] dx’dx (31a)

L(B)= —15 X ’2‘—; fG,,(x —x)J(x)J(x)dx'dx (31b)

L(B) = 753 22 [ 6, =x) = 0,) ()] '
(31c)
1 11 ‘ '
—C—(?j"—‘—'EX‘Z;G—O'//[GE(X—X/)'FM(X—XI)]
% p,(x")p,(x) dx’'dx (31d)
1 1 1
=—X

c(B) @

e Jf16.(x = %)+ M(x = x)]

« ps(x')(g.]s(x)) dx’ dx

(31e)

1 1 1 d
C—t(——)= —Q‘EX 277(0 ffb;[Ge(x—x’)-i—M(x—x’)]
X ps(x’)( J”j(:) )dx’dx (311)
where
L(B)=L,(B)+L(B) (32a)
1 1 1
(32b)

c®) B B

We must be careful that the parameter 8 included in J(x),
J,(x), and p(x) is not taken as a variable to calculate the
circuit elements of (31). If this were done, the results which
follow would be wrong.?

In terms of these circuit elements, (22) can be written

2
lRIZ= - l{ij(ﬁ)+ A

}12 (33a)

2 2 ij(,B)
lR 12——l j L(,B)+—'[i— I (33b)
7R ] RN )

! R,I? ! L,( £ I? 33

—_ == — — 1 + — .

2 t 2 ]O) t B) jwct(B) ( C)
Letting R=R,=R,=0 in (33) gives a set of dispersion

2 Corrections should be made to these results. For exarnple, in (37), the
last term should be removed from the right side.
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equations for lossless lines
B=w/L(B)C(B) (34a)
B=B,(B)=w/L(B)C/(B) (34b)
B=B(B)=w/L(B)C(B). (34c)

If we want to determine the value of B, we can select one
equation in (34) as a dispersion equation. These three
conditions are incorporated in the theory so that if one of
these is satisfied the others are satisfied too. A convenient
choice may be (34a) or (34b), which is entirely valid even
for pure-TEM and quasi-TEM modes. Note that, in [7], the
value of 8 is determined from (34b).

The next step is to apply the above circuit description to
the variational expression (26). The result is

1 1({3L(B
5R12=—jw><5{( a(ﬁ))ﬁ

(Famle-Glm)* o

or in the equivalent form

lR 2__‘_x_ — wl+_/i_2_i__l.__+.2_lg_ 1 }]2
2 *z{ “28 "6 BCB) @ CB)
a 9 B? af

’Ea—ﬁ{wc(ﬁi‘“(m}’z* ey’ Y

__l__a_{__'B_z___ (37)

B
Z0=2 9B\ wC(B) “L(B)}_wc,(ﬁ)f

This is another rigorous expression for Z, with arbitrary
parameters.

As the operating frequency decreases or the width of the
conducting strip decreases, the transverse elements L,( B)
and 1/C,(B) described above become negligible, and
therefore the theory provides the low-frequency operating
solutions as given by Kuester, Chang, and Lewin [4].
Namely, if we replace L(B) in (37) by L,(B) and C(B) by
C/(B) and neglect the last term, then we obtain their
(KCL) solution. The accuracy of this class of approxima-
tion may, however, hold invalid over the entire (complex)
B-plane, which will be used to determine the z-dependent
field excited at an input terminal of microstrip by means of
the spectral-domain method. The work presented in this
section suggests further research that includes the investi-
gation of the complex behavior of the transverse elements
on the B-plane. The KCL solution for Z, behaves as an
increasing function with increasing the frequency. This will
be proved as follows, rewriting (37) with (34) as:

5 \[Lz(ﬁ) _ \/L,(B) B(B)  [L(B) 9B(B)
oV a c(B) 9B

C(B) 9B
(38)




1136

and neglecting the third term in (38). Note that the second
term is the leading termi which increases as the frequency
increases. Note also that the first term becomes equal to
Z,, because of

B [LB
“2=Cem VB

We see that the increasing property of Z, can therefore be
characterized in terms of the negative derivative
3B.(B)/ 9.

In the case of w— 0, L(B) and C(B) approach L,(f)
and C,(B), respectively, and lastly these limiting values are
to coincide with the values of the static elements by
Vaynshteyn and Fialkovskiy [9].

(39)

V. CONCLUSION

A theory has been developed to obtain a rigorous solu-
tion for dispersive microstrip. Closed-form expressions for
the characteristic impedance Z, have been derived. It is
pointed out that the frequency dispersion of Z, in the
graph is caused as a result of the negative slope of the
curve L({B)X C(B) versus B. Since, in the previous theory,
the transverse elements are ignored, the theory seems valid
for limited use in the low-frequency range. The present
theory holds valid at all frequencies and thus is applicable
to strips with arbitrary width in the high-frequency operat-
ing regime, which are solved in [10].

APPENDIX |

Functions G,(x), M(x), and G,(x) are as follows:

G,(x)= 2foooG~h(a)cos(ax) da (Ala)
M(x)=2f°°1\~4(a)cos(ax)da (A1b)
Ge(x)=2fooG~e(a)cos(ax)da (Alc)
where
Gi(e) = Ko+ 1, iy coth(k,d) (A2)
. (e,p,—1)k?
M(a) = (%0 + &, coth(,d )) (e k0 + K, tanh (k,d)) K,
1 Ky
Ge(a) = K, + €,k coth(r,d) X(K—O) (A3)
N a’+B%
= &)~ () (A%)
and
Ko=ya’+ B2 —k? (A5)
x1=\/a2+ﬁz—erp.,k2. (A6)
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APPENDIX 11

Mutual impedances between two points on the strip are
defined as

z,(x) = 2](;00211(01) cos(ax) da (A7a)

Z2pp(x) =2 /0 *%,,(a) cos(ax) da (ATb)
zu(x)=2f0°0212(a)cos(ax)da (A7c)

where

211(0‘)=

1(@

47

[1 1
—+

Ko MK

we

-coth(x,d)~ ———— |G}
coth(k,d) ,lLrSil’lh”(Kld):| a(a)
w o, d

2 27 B
s (are BV s (e L B KB
222(0‘)“ (k) 11( )+47T(w€0)( k)

-{l[—‘l—tanh(xld)

Ko | €51

Gh(a) (AS)

d
+ A —
e, cosh® («,d )

1
+]—+

Ko By

coth(x,d)

]éh(a)

i, sinh? (x,d)

1
—+
Ko

tanh(k,d )+ ———
€,k anh (1, d) €,cosh? (k;d)

-Gl,(a)}ﬂ(a)

w 2 1 a4, . ~
=5x(§) szoﬁ[Ge(a)+M(a)] (A9)

£ = o x  [Gu e+ ().

dre

(A10)

APPENDIX III

Calculate the first variation for charge and currents.
Then

— 32 G x=x)[4,(x)280,(x)
— J,(x")28J,,(x)] dx’ dx
1
/f[Ge(x—x’)+ M(x—x")]

27,

X p,(x)28p,(x) dx’dx.

(A11)
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The 8p, is given by

B B

1
8o, = =8I+ —J, ———-(3 ). (A1)
W Jjw @ :

Substituting this into (A11) and integrating by parts, the
right-hand side becomes

288 1 ff[Ge(x_x’)+M(x~x')]

-
X py(x") I (x) dx’ dx

I3 ey

2 . 2
- j—waZSJsdx+ ;)-fExa.@,dx.

The first double integral is found to be equal to 2P,,, and
the second and third integrals vanish because E, =0 and
E, =0 on the strip.
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